Search for Fourth Generation Quarks in CDF

John Conway Univ. of California, Davis

Brookhaven Forum, May 2010

Another quark generation?

- not forbidden (therefore compulsory?)
- would have big effect on Higgs sector
- leptons too? if so, $m(v_4) > 50 \text{ GeV}$
- may not be simple sequential generation...

CDF analyses: b' and t'

b': look for LS dilepton+jets+MET events

t': look forlepton+jets+MET events

4.6 fb⁻¹

Search strategy for t'

- select lepton plus jets events
- reconstruct t' mass using mass fitter
- fit in multidimensional space: H_T , M_{reco} , N_{jet}/χ^2

"3D" fit for t

H_T vs M_{reco}, vs jet category:

Likelihood approach

- use binned poisson likelihood in all three dimensions
- represent all systematic errors as nuisance parameters in likelihood; remove by profiling
- obtain posterior in signal cross section using Bayes theorem
- integrate to find 95% CL upper limit on signal assuming uniform prior (up to cutoff)

Systematics in t'analysis

Three kinds; all gaussian-constrained:

- normalization uncertainties
 integrated luminosity, ID scale factors,
 background cross sections
- 2. shape(+normalization) uncertainties jet energy scale, Q² scale, ISR/FSR
- 3. MC statistics

handled using "Barlow-Beeston lite" method; bins combined automatically to ensure accuracy

Fit results for t'

Fit results

Peak region fits much better with no signal present!

Fit results

H_T fits fits well with or without signal present

t' limit curve

m(t') > 335 GeV at 95% CL

Significance of t' excess?

- There is no statistically significant excess, it's really less than 2 sigma
- But what are these overflow events?
 - Have continued to increase with more data:
 now see 10, expect ~4-5
 - Look like ordinary top lepton+jets but with huge H_T or M_{reco}

b' search using LS dileptons

- 4W, 2b final state
 - 2 same-sign e/mu with pT > 20 GeV
 - at least two jets; at least one b tagged
 - at least 20 GeV missing E_T
- low background in SM: fakes, conversions, Z/diboson

Source	ee	mm	em	ll
Z, diboson	0.03 ± 0.015	0.02 ± 0.01	0.04 ± 0.02	0.1 ± 0.05
tt	0.17 ± 0.017	0.06 ± 0.006	0.22 ± 0.022	0.5 ± 0.05
W + jets	0.56 ± 0.56	0.34 ± 0.34	0.47 ± 0.47	1.4 ± 1.4
Total	0.8 ± 0.56	0.4 ± 0.34	0.7 ± 0.47	1.9 ± 1.4
Data	0	1	1	2

b' search using LS dileptons

at least 4 W's, 2b's, no matter what!

- at least 4 W's, 2b's, no matter what!
- energy of LHC will win quickly...

A variant?

• It could be that $t' \rightarrow tZ$, $b' \rightarrow bZ$ play a strong role (S. Martin, arXiv:0910.2732)

